pseudobulk_dim_plot.RdGenerates a PCA plot after computation of "pseudobulk" counts
pseudobulk_dim_plot(
x = NULL,
color_pal = "muted",
plot_meta = NULL,
dim = "pca",
pcx = 1,
pcy = 2,
ptsize = 5
)an STlist with pseudobulk PCA results in the @misc slot (generated by
pseudobulk_samples)
a string of a color palette from khroma or RColorBrewer, or a
vector of color names or HEX values. Each color represents a category in the
variable specified in plot_meta
a string indicating the name of the variable in the sample metadata to color points in the PCA plot
one of umap or pca. The dimension reduction to plot
integer indicating the principal component to plot in the x axis
integer indicating the principal component to plot in the y axis
the size of the points in the PCA plot. Passed to the size
aesthetic from ggplot2
a ggplot object
Generates a Principal Components Analysis plot to help in initial data exploration of
differences among samples. The points in the plot represent "pseudobulk" samples.
This function follows after usage of pseudobulk_samples.
# Using included melanoma example (Thrane et al.)
# Download example data set from spatialGE_Data
thrane_tmp = tempdir()
unlink(thrane_tmp, recursive=TRUE)
dir.create(thrane_tmp)
lk='https://github.com/FridleyLab/spatialGE_Data/raw/refs/heads/main/melanoma_thrane.zip?download='
download.file(lk, destfile=paste0(thrane_tmp, '/', 'melanoma_thrane.zip'), mode='wb')
zip_tmp = list.files(thrane_tmp, pattern='melanoma_thrane.zip$', full.names=TRUE)
unzip(zipfile=zip_tmp, exdir=thrane_tmp)
# Generate the file paths to be passed to the STlist function
count_files <- list.files(paste0(thrane_tmp, '/melanoma_thrane'),
full.names=TRUE, pattern='counts')
coord_files <- list.files(paste0(thrane_tmp, '/melanoma_thrane'),
full.names=TRUE, pattern='mapping')
clin_file <- list.files(paste0(thrane_tmp, '/melanoma_thrane'),
full.names=TRUE, pattern='clinical')
# Create STlist
library('spatialGE')
melanoma <- STlist(rnacounts=count_files,
spotcoords=coord_files,
samples=clin_file, cores=2)
#> Found matrix data
#> Matching gene expression and coordinate data...
#> Converting counts to sparse matrices
#> Completed STlist!
melanoma <- pseudobulk_samples(melanoma)
pseudobulk_dim_plot(melanoma, plot_meta='patient')